

SCEGGS DARLINGHURST

TRIAL EXAMINATION

Mathematics

Year 12

2/3 *Unit*

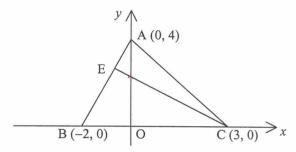
TIME ALLOWED: 3 hours (plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

- Attempt all ten questions. All questions are of equal value.
- Ensure that your student number is on this paper.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Approved calculators should be used. Mathematical templates and geometrical instruments may be used.
- Begin each question on a new page write your number at the top of each page.
- The table of standard integrals is printed on the last page.

Qu	Question 1. (12 Marks)	
a)	Find, to two significant figures, the value of $\sqrt{\frac{3.5^2 - 4}{4.6 - 2.5}}$.	2
b)	Factorise $4x^2 - 36$.	2
c)	Simplify: $3 - 2(3x + 4) + 13x$.	2
d)	Solve $15x^2 = 10x$.	2
e)	Show the solution to $ x-4 < 5$ on a number line.	2
f)	Show that the reciprocal of $(\sqrt{3} - \sqrt{2})$ is $(\sqrt{3} + \sqrt{2})$	2

Question 2. (12 Marks) Begin a new page.



In the figure shown, ABC is a triangle with vertices A (0, 4), B (-2, 0) and C (3, 0). AO and CE are altitudes of the triangle (that is, AO is perpendicular to BC and EC is perpendicular to AB).

Copy the diagram onto your writing paper.

- a) State the equation of the altitude AO.
- b) Show that the equation of EC is x + 2y 3 = 0.
- c) Find the co-ordinates of H, the point of intersection of EC and AO.

Ad) Find the ratio, OH: AH. NB. should have 3:5 to get 1

- e) Explain why the equation of the line AB is y = 2x + 4.
- f) Find the length EC, that is, the perpendicular from C to E.
- g) Find the area of the triangle ABC using AB as the base and EC as the height. 3 Check your answer by finding the same area another way.

Question 3 begins on the next page.

Question 3. (12 Marks) Begin a new page.

Marks

a) Differentiate:

3

- i) $\tan (5x 3)$
- ii) $\frac{2}{3x^2}$
- b) i) Rewrite $\log_e \left(\frac{2x-1}{4x+1} \right)$ using the Logarithm laws.

3

- ii) Hence differentiate $\log_e \left(\frac{2x-1}{4x+1} \right)$
- c) Find

4

- i) $\int (3x+2)^4 dx$
- ii) $\int_{0}^{1} 3e^{2x} dx$
- d) A body is increasing its velocity at a decreasing rate. Draw a sketch of the velocity-time graph for this body.

Question 4. (12 marks) Begin a new page.

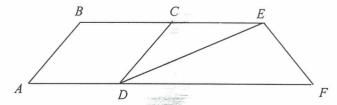
a) 'When tossing three coins there are four possible results. They are: 3 tails, 2 tails and 1 head, 2 heads and 1 tail, 3 heads.

2

Thus the probability of obtaining 3 tails when tossing three coins is $\frac{1}{4}$.

Comment on the validity of this statement, justifying your response.

b) In the figure below ABCD is a rhombus. E is a point on BC produced such that C is the midpoint of BE. F is a point on AD produced such that $\angle DEF = 90^{\circ}$. Also $\angle BAD = 72^{\circ}$.



- i) Copy the diagram and clearly show this information.
- ii) Find, giving reasons, the size of $\angle CDE$.
- iii) Find, giving reasons, the size of ∠DFE.

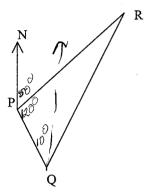
Question 4 continues on the next page.

Question 4. (continued)

Marks

c) A ship leaves a port P, sailing on a bearing of 170°, and reaches a port Q, 50 kilometres from P. The ship's captain then realises that they should have sailed from P on a bearing of 50° to reach R, 170 km from P. The diagram is shown below.

6



- i) Copy the diagram and show on it the lengths of PR and PQ, as well as the size of the angle RPQ.
- ii) Calculate the distance from Q to R, giving your answer to the nearest kilometre.
- iii) Find \angle PQR to the nearest degree, and hence the bearing on which the ship will need to sail so that it reaches R from Q.

Question 5. (12 Marks) Begin a new page.

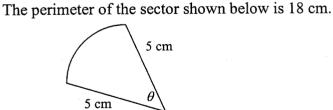
a) A parabola has equation $(x-4)^2 = 8(y+3)$.

4

- i) Find the co-ordinates of its focus.
- ii) Find the equation of its directrix.
- iii) Describe the locus in words.

b)

4



- i) Find the exact value of the angle θ in radians.
- ii) Hence find the area of this sector.
- c) Consider the equation $x^2 + 6x + c = 0$.

4

- i) Find the range of values of c for which there are no real solutions to this equation.
- ii) Explain how you can use your answer in c) part i) to help you determine the values of x for which $x^2 + 6x + 20 > 0$, and what this tells you about the graph of $y = x^2 + 6x + 20$. (You do not need to draw this graph).

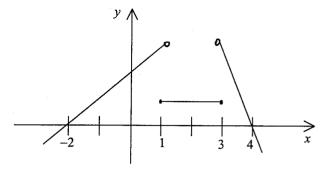
Ouestion 6 begins on the next page.

Question 6. (12 Marks) Begin a new page.

Marks

a) The graph of y = f(x) is below.

3



Draw a sketch of y = f'(x) for this function.

b) For the curve $y = x^3 - 3x^2 + 1$;

9

- i) Find any stationary points and determine their nature.
- ii) Find any points of inflexion.
- iii) Find the values of x for which the curve is concave down.
- iv) Sketch the curve for $-1 \le x \le 4$.

Question 7. (12 marks) Begin a new page.

a) Solve the inequality $-6 \le 2x \le 5 - 2x$.

2

b) A box contains 12 light bulbs that look the same, but two of them are defective. Two light bulbs are drawn at random without replacement.

4

- i) What is the probability that the first light bulb drawn is defective?
- ii) What is the probability that, of the two light bulbs drawn, at least one is defective?
- c) Explain how you can tell that a function has a horizontal point of inflexion. Give an example of the equation for such a function.

2

d) Given that $\frac{dy}{dx} = \frac{x}{x^2 - 4}$;

4

- i) Find y in terms of x, given that y = 0 when x = 3.
- ii) State the set of x values for which y exists.

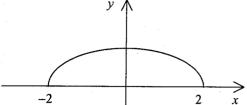
Question 8 begins on the next page.

Question 8. (12 Marks) Begin a new page

Marks

a) The diagram below shows the graph of the curve $y = \frac{1}{2}\sqrt{4-x^2}$.

6



- i) Use Simpson's Rule with five function values to estimate the area enclosed by the curve and the x axis.
- ii) Use integration to find the exact value of the volume of the solid of revolution formed when the region enclosed by this curve and the x axis is rotated about the x axis.
- b) The amount in grams of a radioactive substance present after t years is given by $A = 80e^{-0.025t}$.
 - i) Find the amount of radioactive substance present after 10 years.
 - ii) What is the half-life of this radioactive substance?
 - iii) At what rate is this substance decaying after 8 years?

Question 9. (12 Marks) Begin a new page

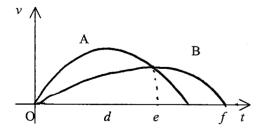
a) i) Draw the graphs of $y = 2\sin x$ and $y = \tan x$, for $0 \le x \le 2\pi$.

ii) Use your graphs to determine the number of solutions to $2\sin x = \tan x$ within this domain.

iii) From the equation $2\sin x = \tan x$, show that $\sin x(2\cos x - 1) = 0$.

iv) Find all values of x, where $0 \le x \le 2\pi$, that are solutions to the equation $2\sin x = \tan x$. (Give values in exact form.)

b) Two particles A and B are moving in a straight line. The graphs below show the velocities (in m/s) of each particle at time t seconds.



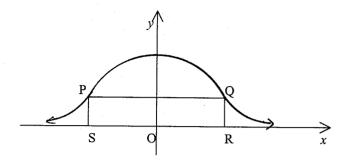
- i) Which particle shows the greater acceleration in the first d seconds? Why?
- ii) Describe the motion of each particle at time e seconds.
- iii) Draw a graph showing the displacement of particle B, as a function of time t, from t = 0 to t = f.

Question 10 begins on the next page.

Question 10. (12 Marks) Begin a new page.

Marks

a) The diagram shows a rectangle PQRS, where P and Q are on the curve $y = e^{-x^2}$ 5 and R and S are on the x axis. The point O is the origin and OS = OR.

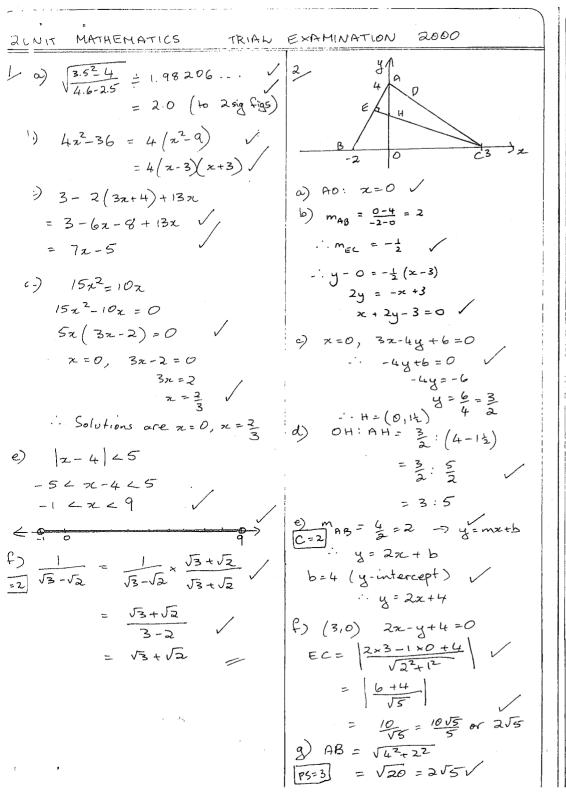


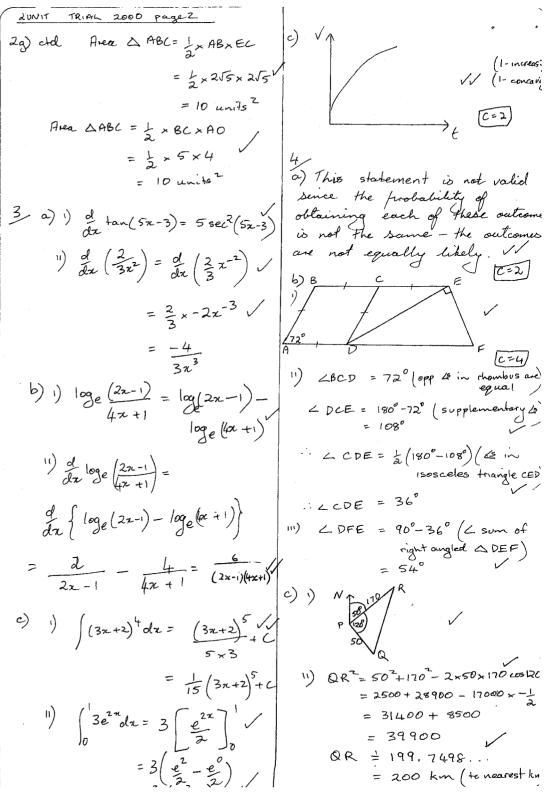
- i) Let the length OR = x. Show that the area of the rectangle PQRS is represented by $A = 2xe^{-x^2}$.
- ii) Find the value of x, in exact form, for which PQRS has maximum area.
- b) If $f(x) = 2 \log_{e} x$,

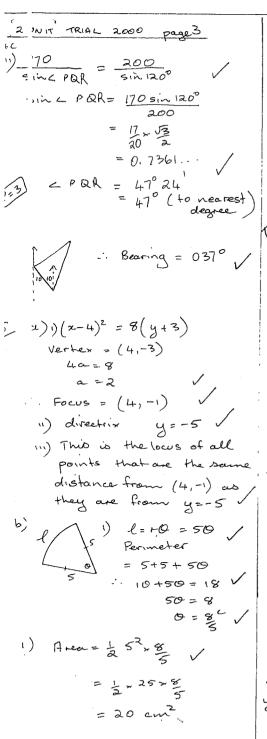
7

- i) Explain why the graph of the curve y = f(x) is always decreasing.
- ii) Find the x intercept of y = f(x).
- iii) Sketch the graph of y = f(x).
- iv) Write down the integral that enables us to find the area enclosed by the curve $y = 2 \log_e x$ the line y = 2 and the x-axis. (You do not have to evaluate this integral).

End of Examination.

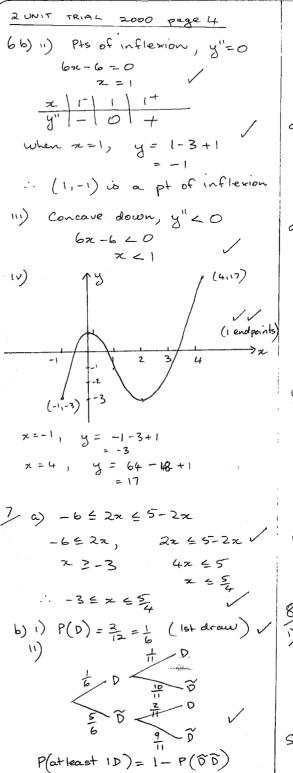


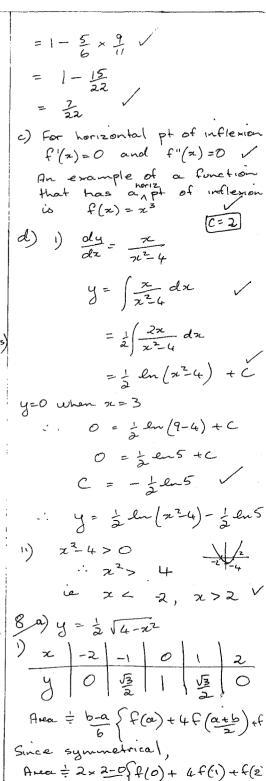




(x) $x^2 + 6x + C = 0$		
$\Delta = b^2 + 4ac$		
= 36-4×1×C		
= 36-40		
No real solut, \$\Delta < 0		
:- 36-4c < D 36 < 4c		
c > 9		
11) For 22+62+20, this quadratic		
expression has the same form		
kinas x2+6x+c, and c>9,		
thus there are no real solutions		
$40 n^2 + 6x + 20 = 0$.		
Also the parabola is upright		
Also the parabola is upright since a > 0		
: 22+62+2070 for all x		
The graph of y=x2+6x+20		
in thus completely above the		
is thus completely above the or axis and upright.		
/		
6 a) 1 y=f'(2)		
P=3		
<u> </u>		
<u> </u>		
a) $y=+(x)$ $P=3$ $2 3 4$ $2 3 4$		
b) y= x-3x +1		
1) $y' = 3x^{2} - 6x$ = $3x(x-2)$		
Con alak ala (2-7)		
For stat pts y'=0		
ie 3x(x-2)=0		
x=0, x=2 /		
y" = 62-6 when x=0, y"=-6 - max		
when z=0, y"=-6 : max when z=2, y"=6 :- min		
Unalues who - 1		
. 9		
when $x = 2$, $y = 8 - 12 + 1$ = -3		
i. (0,1) is a max turning pt		

12,-3) is a min turning pt





2 Unit Trial 2000 page 5 (a)) Area = 3 (1+4×5+0)/ $=\frac{2}{3}\left(1+2\sqrt{3}\right) \text{ units}^2$ $V = IT \left(\frac{1}{2} \sqrt{4 - n^2} \right)^2 dx$ $= 2\pi \int \frac{4-\pi^2}{4} d\pi$ $= \frac{\pi}{2} \left(\frac{2}{(u - \kappa^2)} d\kappa \right)$ $= \int_{2}^{\pi} \int_{2}^{\pi} \left(4\pi - \frac{\pi^{3}}{3} \right)^{2} \sqrt{1 + \left(\frac{\pi^{3}}{3} \right)^{2}}$ $= \frac{\pi}{2} \left(8 - \frac{8}{3} - (0 - 0) \right)$ = 811 units 3 / A = 80e-0.025t 1) t=10, A=80 e-0.25 = 62.3g

1 = e-0.0256

Initial ant = 80g Half life -> 40g 40 = 80e-0.025t ln = -0.025t $t = \frac{\ln 2}{-0.025}$ = 27.73 years

11) There are 5 solutions to 2 sinx = tanx from the graph

2 sinx = tanz 2 sin x = sin x 2 sinxcosx = sinx 2 sinz cosz-sinz =0 $\sin x \left(2 \cos x - i \right) = 0$

1V) sinx=0, 2com-1=0 2=0,1,211

: Solus are x=0, \(\bar{3}, \bar{17}, \bar{517}, 217

b) i) A shows the greater acch since gradients of tangents for A are always greater than gradients of tangents for B a dy = acceleration VV

11) Both A & B have the same velocity at t=e, however B is accelerating and A

is decelerating.

.. Area PQRS = 2xxe-x-= 2xe-x2

11) $\frac{dA}{dz} = 2x \times -2xe^{-x^2} + 2e^{-x^2}$ $= -4x^2e^{-x^2}+2e^{-x^2}$ $= 2e^{-x^2}(1-2x^2)$

For max Area, dA = 0 $2e^{-n^2}(1-2n^2)=0$

2e-x +0, 1-2n2=0

But initially 2>0 = 2=1

 $\frac{d^2A}{cdx^2} = 2e^{-x^2}\left(-4x\right) + 4xe^{-x^2}$

= -8xe-22 4xe-22 32 $=4xe^{-x^2}(2x^2-3)$

When x = 1/2, 2x2-3 = 2x2-3

-- max (42e-x2>0)

X=1 VI gives marriaged of PQRS

b) 1) f(z) = 2-loge >c/ $f'(z) = -\frac{1}{x} < 0 \text{ for all } z > z$ (logex only exists for x70 -: f(x) is always decreasing 1) x intercept, f(z) = 0ie 0 = 2 - ln x

lnx = 2 $z = e^2$: x intercept = $(e^2, 0)$

 $A = \int_{-\infty}^{\infty} f(y) dy$ y = 2-ln x

ln x = 2 - y

 $2 = e^{2-y}$ $A = \begin{cases} e^{2-y} dy \end{cases}$